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An animal’s movement rate (mobility) and its ability to perceive
fitness gradients (fitness sensitivity) determine how well it can
exploit resources. Previous models have examined mobility and
fitness sensitivity separately and found that mobility, modelled
as random movement, prevents animals from staying in high-
quality patches, leading to a departure from an ideal free
distribution (IFD). However, empirical work shows that animals
with higher mobility can more effectively collect environmental
information and better sense patch quality, especially when the
environment is frequently changed by human activities. Here,
we model, for the first time, this positive correlation between
mobility and fitness sensitivity and measure its consequences for
the populations of a consumer and its resource. In the absence of
consumer demography, mobility alone had no effect on system
equilibria, but a positive correlation between mobility and fitness
sensitivity could produce an IFD. In the presence of consumer
demography, lower levels of mobility prevented the system from
approaching an IFD due to the mixing of consumers between
patches. However, when positively correlated with fitness
sensitivity, high mobility led to an IFD. Our study demonstrates
that the expected covariation of animal movement attributes can
drive broadly theorized consumer–resource patterns across
space and time and could underlie the role of consumers in
driving spatial heterogeneity in resource abundance.
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1. Introduction

Animal movement is central to behavioural ecology, meta-population and meta-community dynamics,
epidemiology and conservation ecology [1–4]. Most animals move across spatially heterogeneous
environments, in which they select habitat patches by being either more attracted to, or retained for
longer, in patches that provide higher fitness [5,6]. The dependency of movement on fitness
differences across space, commonly studied as ‘habitat choice’ or ‘habitat selection’ in the movement
ecology literature (e.g. [7]), is considered an evolutionary adaptation to heterogeneous environments
[8,9] and can lead to an ideal free distribution (IFD), in which consumers distribute themselves among
patches so that their fitnesses (often approximated by their consumption rates of resources) are equal
across occupied patches [10–12].

Most models of fitness-directed movement have distinguished two components: the baseline
movement rate (hereafter referred to as ‘mobility’) and the responses to spatial differences in
fitness (i.e. habitat selection behaviour, hereafter referred to as ‘fitness sensitivity’), which is, in
part, determined by the animal’s perceptual abilities [13]. Previous theoretical patch models (e.g.
[14,15]) combined baseline mobility and fitness sensitivity to represent fitness-directed movement,
by allowing animals to direct movement towards the ‘better’ patch(es) while retaining some degree
of ‘mistakes’, due, for example, to imperfect perception [13,16]. However, those models were only
evaluated by varying either mobility or fitness sensitivity [14,15]. They therefore essentially treated
the two processes as independent of one another. A similar approach has been taken in non-patch
models that have represented space continuously [17,18] and in individual-based models [19]. In
these models, no matter how space is modelled, it was also typically assumed that the
environment was spatially variable but temporally constant and that the animals were able to
instantaneously perceive the local environment’s conditions. Under those assumptions, the models
showed that mobility, acting as random movement, prevented individuals from staying in the best
patch(es), while fitness sensitivity enhanced the ability of individuals to find and stay in the most
profitable patches. Therefore, in these models, mobility and fitness sensitivity had antagonistic
effects on the system achieving an IFD (see [17,20]). This finding is consistent with other theoretical
studies comparing the effects of random and fitness-directed movement on system dynamics (see
[8,21,22]).

However, mobility and fitness sensitivity of movement are not likely to be independent. For example,
marine placozoans with higher mobility are better able to sense and move towards food [23]. This could
result from the positive relationship between mobility and information acquisition [24]. Many animals
collect information about their environment while moving, a phenomenon commonly called ‘habitat
sampling’ [13,16,25–27]. Moreover, natural environments change with time, due to both natural and
anthropogenic influences (e.g. [28]). Therefore, higher mobility could increase information acquisition,
shorten the time required to detect and exploit transient fitness differences [13,16] and, thus,
potentially increase the fitness sensitivity of movement.

By ignoring the interdependency between mobility and the fitness sensitivity of movement,
previous studies cannot measure how interactions between mobility and fitness sensitivity may
shape distributions of animal populations. This could lead to the incomplete understanding, or even
misinterpretation, of the effects of animal movement on system dynamics. For example, previous
studies, which assumed that mobility and fitness sensitivity were independent, have postulated that
an IFD is most likely when mobility is low and fitness sensitivity is high [17,20]. However, a
positive correlation between mobility and fitness sensitivity could yield results that qualitatively
change these expectations. To explore the conditions under which mobility and fitness sensitivity
interactively affect consumer–resource distributions, here we compare the results when mobility
and fitness sensitivity vary independently of one another (as in past analyses) with results when
they covary.

We develop a simple two-patch consumer–resource model to investigate the effects of the positive
correlation between mobility and the fitness sensitivity of movement on population dynamics and the
spatial distributions of consumers and resources. We used both analytical and numerical methods to
explore the isolated and combined effects of mobility and fitness sensitivity of movement on the
equilibrium densities of consumers and resources at the local (within one patch) and regional (across
both patches) scales. To separate the effects of behavioural processes from longer-term population
dynamics, we first excluded consumer demography to examine patterns arising over short (i.e.
behavioural) temporal scales and then included consumer demography to examine long-term patterns
arising from both behavioural and demographic processes.
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2. Model

We consider a consumer–resource system within a two-patch landscape that is heterogeneous in
resource dynamics (see [29]). For simplicity, we consider two patches: a high-quality patch containing
resources with a high growth rate and large carrying capacity, and a low-quality patch containing
resources with a low growth rate and small carrying capacity. We assume that patches are equal in
size and that each patch can support a local community of resources and consumers. Because
consumers are often much more mobile than their resources (e.g. grazers versus grass, fishes versus
zooplankton or snails versus barnacles; see [30–32]), and to facilitate analytical tractability, we assume
that consumers can move but resources are sedentary. We quantify the fitness of the consumers as
their local per-capita growth rate. We assume that resources grow logistically in the absence of
consumers, consumers exhibit a Type I functional response and consumers do not exhibit interference
competition (interference competition and saturating functional responses can produce confounding
effects on the densities of consumers and resources; see [14]). These assumptions lead to the
following equations:

dRH

dt
¼ rHRH 1� RH

KH

� �
� aRHCH, ð2:1Þ

dRL

dt
¼ rLRL 1� RL

KL

� �
� aRLCL, ð2:2Þ

dCH

dt
¼ p(caRH � m)CH þ CLQHL � CHQLH ð2:3Þ

and
dCL

dt
¼ p(caRL � m)CL þ CHQLH � CLQHL, ð2:4Þ

where the state variables, Ri and Ci, are the densities of resources and consumers, respectively, in patch
type i (low-quality = L and high-quality =H), ri and Ki are the growth rate and the carrying capacity of
the resources in patch i, α is the attack rate of consumers on resources, c is the consumer’s conversion
efficiency, μ is the consumer’s mortality rate, Qij is the movement rate of consumers from patch j to i
(we assume that individuals are well mixed inside each patch) and p is a parameter that indicates the
inclusion ( p = 1) or exclusion ( p = 0) of consumer demography.

The fitness of consumers in patch i (wi) is equal to their per-capita growth rate:

wi ¼ caRi � m: ð2:5Þ

To describe the movement rate from patch j to i, we follow the general form used in previous
theoretical investigations (e.g. [14,15,33]:

Qij ¼ bel(wi�wj), ð2:6Þ
where β is the consumer’s mobility, λ is the fitness sensitivity of movement and wi � wj is the fitness
difference between patch i and j.

Using this model, we examined how the equilibria of consumers and resources change when β and λ
vary independently of each other versus how they change when β and λ positively covary. For simplicity
but without losing generality, we assumed that β and λwere linearly related, i.e. l ¼ g b, where γ > 0. We
restricted our analyses to parameter values that led to positive consumer and resource densities in both
patches, e.g. we did not consider cases in which the consumer was unable to persist in the low-quality
patch in the absence of migration. When analytical solutions were not possible, we conducted
simulations in the R programming language [34]. Each simulation was run for 5000 time-steps, which
was sufficient for the system to reach equilibrium (i.e. densities did not change with additional time-
steps).
3. Results
3.1. Without consumer demography
In the absence of consumer demography ( p = 0 in equations (2.3) and (2.4)), the model had a unique
stable positive equilibrium (see electronic supplementary material, appendix 1), which occurred when
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Figure 1. Relationships between equilibrium densities of consumers (a), resources (b) and mobility (β or λ/γ) in the high- (solid
line) or the low-quality patch (dashed line) in the absence of consumer demography ( p = 0). The parameters are: rH = 2, rL = 1,
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total migration rates into and out of each patch were equal (CLQHL =CHQLH):

C�
L

C�
H
¼ e�2lca[R�

H�R�
L], ð3:1Þ

R�
H ¼ KH 1� aC�

H

rH

� �
, ð3:2Þ

and R�
L ¼ KL 1� aC�

L

rL

� �
: ð3:3Þ

Solutions for the equilibria (equations (3.1)–(3.3)) did not include the mobility term β, indicating
that changing mobility alone (i.e. without a correlated change in fitness sensitivity) does not affect
the equilibrial consumer–resource patterns. However, greater mobility led to faster convergence to the
steady state (see electronic supplementary material, figure S1 in appendix 2). By contrast, solutions for
the equilibria did depend on fitness sensitivity, λ (via equation (3.1)). Therefore, we conducted extra
analyses (in the absence of consumer demography) to explore how the equilibria changed as λ
increased (which yields identical equilibria as the situation in which β and λ are positively correlated).

In the absence of fitness sensitivity (i.e. λ = 0), consumers were equally distributed between the two
patches (C�

H ¼ C�
L ¼ CT, where CT is the mean consumer density; see the y-intercept in figure 1a), while

the resources were more dense in the high-quality patch (R�
H . R�

L; compare the solid and the dashed
lines in figure 1b).

As fitness sensitivity increased, consumer density increased in the high-quality patch but decreased
in the low-quality patch at equilibrium (figure 1a), while resource density showed the opposite pattern
(figure 1b; see also equations S16 and S18 in electronic supplementary material, appendix 3). Thus, the
disparity of resource densities in the two patches decreased as fitness sensitivity increased, and
eventually approached 0 as fitness sensitivity approached infinity. As a result, consumer fitness (per-
capita growth rate; equation (2.5)) became equal in the two patches. In other words, with high fitness
sensitivity, consumers distributed themselves among patches to achieve equal fitness, resulting in an
IFD (see [10,18]).

Due to the absence of consumer demography, the average (system-wide) density of the consumer was
constant across all parameter values (figure 2a). The resources, however, were dynamic, yet their average
density was also invariant to changes in λ so long as the density-dependent mortality of resources was
equivalent in both patches ðrH=KH ¼ rL=KLÞ, i.e. as the fitness sensitivity of the consumers’ movement
increased, the regional density of resources remained constant (the solid line in figure 2b; equation S21
in electronic supplementary material, appendix 4). If the density-dependent mortality of resources was
larger in the high-quality patch (i.e. rH=KH . rL=KL; equation S22 in electronic supplementary
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material, appendix 4; see the dashed line in figure 2b), the movement of consumers from the low- to the
high-quality patch reduced intraspecific competition in the resource and increased average resource
density (see compensatory growth in [35]). Therefore, increasing fitness sensitivity reinforced the
increase in regional resource density (equation S22 in electronic supplementary material, appendix 4
and the dashed line in figure 2b). Conversely, if rH=KH , rL=KL, intraspecific competition in the
resource increased when consumers migrated from the low- to the high-quality patch, causing the
regional resource density to decline (equation S23 in electronic supplementary material, appendix 4;
see the dotted line in figure 2b).
3.2. With consumer demography
In the presence of consumer demography (p = 1 in equations (2.3) and (2.4)), the equilibria were
determined by mobility, the fitness sensitivity of movement and the demographic parameters
of consumers within each patch. Thus, in the presence of consumer demography, we considered all
three movement scenarios: (i) fitness sensitivity (λ) was fixed but mobility (β) varied; (ii) mobility was
fixed but fitness sensitivity varied, and (iii) fitness sensitivity and mobility covaried (i.e. l ¼ g b,
where γ > 0). In a few simple cases, we were able to provide analytical solutions, although in most
cases, we relied on simulations. Here, we only considered the parameter sets that led to stable
equilibria. It is possible that other parametrizations could produce oscillations (for details, see [33]),
but this is beyond the scope of this paper.
3.2.1. Fitness sensitivity is fixed but mobility varies

To evaluate the independent effects of mobility, we fixed fitness sensitivity at three values (λ = 0.1, 10 or
1000) but varied mobility (β). In the absence of movement (β = 0), the two patches were not coupled, and
the equilibria were determined by consumer demography alone:

R�
H ¼ R�

L ¼ R� ¼ m

ca
, ð3:4Þ

C�
H ¼ rH

a
1� m

caKH

� �
ð3:5Þ

and C�
L ¼ rL

a
1� m

caKL

� �
: ð3:6Þ

Thus, in the absence of movement, at equilibrium, consumer density was greater in the high-quality
patch (due to rH . rL and KH . KL: figure 3a,b and equations (3.5) and (3.6)), but resource density and
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thus consumer fitness were equal in the two patches (figure 3c,d; see equation (2.5)). This is the classic
result from the Lotka–Volterra predator–prey model, in which the resource equilibrium is set by the
mortality rate of the predator (i.e. consumer), which is the same in both patches [36].

Because consumers tended to be denser in the high-quality patch, increasing mobility (β) moved
consumers out of the high-quality patch and into the low-quality patch. As a result, increasing
mobility (β) reduced the density disparity of consumers between the patches, although this was
counteracted by the level of fitness sensitivity of movement: consumer density was more different
between the patches when fitness sensitivity was larger (figure 3a,b). Increasing the mobility of
consumers led to a larger difference of resource densities between the two patches, i.e. higher resource
density in the high-quality patch but lower resource density in the low-quality patch (figure 3c,d).
This difference in resource density was greater when fitness sensitivity was smaller. Similarly, the
fitness of consumers in the two patches (equation (2.5)) became more disparate as mobility increased,
mirroring the change in the resource density (figure 3c,d). This effect was reduced under larger fitness
sensitivity because fitness sensitivity produced the opposite effect on the movement of consumers, i.e.
more consumers moved from the low- to the high-quality patch. When fitness sensitivity was very
large (e.g. λ = 1000), changing mobility had little effect on consumers or resources, i.e. the equilibrium
densities of consumers and resources resembled those that occurred when consumers were immobile
and could only respond demographically (see the dotted lines in figure 3).
3.2.2. Mobility is fixed but fitness sensitivity varies

For these analyses, we fixed mobility at three levels (β = 0.01, 0.1 or 1) but varied fitness sensitivity (λ). In
the absence of fitness sensitivity (λ = 0), consumers exhibited purely random movement (i.e. all
individuals had the same probability of emigration and no matter the density of resources in a patch)
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and had higher birth rates in the high-quality patch and thus achieved higher densities. Because of this
density difference, more consumers moved from the high- to the low-quality patch, and mobility
controlled the rate of this movement (larger β homogenized the distribution of consumers between
patches; see the nearly equal intercepts of the dotted lines in figure 4a,b). This spilling of consumers
out of the high-quality patch created a disparity in resource densities between the two patches
(compare intercepts in figure 4c,d).

The fitness sensitivity of movement counteracted the homogenizing effect of mobility on consumer
density. As a result, as we increased fitness sensitivity, consumer density increased in the high-quality
patch and decreased in the low-quality patch (figure 4a,b). Resource density became more similar in
the two patches (figure 4c,d). These effects of fitness sensitivity were more pronounced when animals
were more mobile (compare the trends of the three lines in figure 4).

3.2.3. Fitness sensitivity and mobility vary together

To explore the effects of covariance in fitness sensitivity and mobility, we rewrote equation (2.6) by
replacing λ with gb. Thus, although we functionally varied b to conduct our simulations, this effect
was equivalent to simultaneously changing both λ and b. We examined the effect of increasing
movement (i.e. mobility) at three different levels of fitness sensitivity relative to mobility, g (=λ/β; 0.1,
1 and 10).

As we noted above, in the absence of any movement (λ=β=0), equilibria were determined by
consumer demography alone: consumer density was greater in the high-quality patch, but resources
(and thus consumer fitness) were equivalent in the two patches (see equations (2.5) and (3.4)–(3.6) and
y-intercepts in figure 5). As movement (i.e. both mobility and fitness sensitivity) slightly increased, the
disparity in consumer density decreased, but the disparity in resource density increased (figure 5).
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This pattern was similar to the scenario in which fitness sensitivity was fixed but only mobility varied
(figure 3). However, as movement increased further (e.g. when β > 2), the opposite trend occurred:
the disparity in consumer density increased while the disparity in resource density decreased. This
trend was more obvious when fitness sensitivity was relatively large (indicated by the larger values of
γ = λ/β; compare the three lines in figure 5). The above trends resulted in a unimodal relationship
between consumer density and movement (figure 5). Consumers and resources exhibited opposite
patterns at equilibrium: higher consumer density led to lower resource density in either the high- or
low-quality patch (compare the three lines in (a,b) and (c,d ) in figure 5). These humped relationships
suggest that random movement dominated the system when consumers were less mobile, while
fitness-directed movement dominated the system when consumers were more mobile.
4. Discussion
Movement can influence species interactions and distributions across heterogeneous landscapes [37–44].
Previous studies of fitness-directed movement used a modelling framework similar to ours (i.e. equation
(2.6)), but examined effects of mobility and fitness sensitivity separately. These studies showed that the
two processes have opposing effects on achieving an IFD: increasing fitness sensitivity facilitated the
formation of an IFD (via increased movement into patches offering higher fitness), but increasing
mobility prevented it (by increased mixing among patches) (see figure 3; also [17,20,22]). By
contrast, our study demonstrated a three-way interaction between mobility, fitness sensitivity and
consumer demography. In the absence of consumer demography, only fitness sensitivity influenced
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consumer–resource patterns: IFD was produced only under high rates of fitness sensitivity. Mobility can

thus only influence IFD through a correlation with fitness sensitivity (figure 1). However, when
consumers were demographically dynamic, consumer demography alone (without any movement)
produced IFD-like patterns (figures 3–5; see [20]). In the presence of movement with uncorrelated
mobility and fitness sensitivity, fitness sensitivity facilitated, but mobility prevented, the achievement
of IFD (figure 3), which is consistent with previous theoretical work [17,20,22]. When mobility and
fitness sensitivity were positively correlated, the relative role of their synergistic and antagonistic
effects depended on the overall levels of movement (figure 5). At low movement rates, increasing
movement disrupted the demographically driven IFD—the role of mobility dominated these effects of
movement; however, when at higher movement rates, increasing movement caused the system to
revert to IFD (see unimodal trend in figure 5). These results highlight the joint influence of consumer
demography and movement on species interactions [45,46] and, in contrast to previous work [17,20],
demonstrate how high mobility could facilitate an IFD.

Understanding the effects of a correlation between mobility and the fitness sensitivity of movement
could be fundamental to reaching a unified understanding of the propensity of a system to reach an IFD,
a pattern commonly observed in various natural ecosystems with highly mobile consumers and sessile
resources [47,48]. The positive correlation between mobility and the fitness sensitivity of movement
could be explained by the joint evolution of an animal’s movement and sensory and cognitive
capacities that enhance the ability to perceive and respond to environmental information [13,49] and
by the fact that animals that are more mobile encounter more opportunities to collect information
about how the environment varies over space [16]. Consistent with this idea, it has been shown that
less mobile species often perform random movement and have limited exploration capability (e.g.
deposit-feeding invertebrates fail to forage in food-rich areas; [50]), while more mobile individuals
usually exhibit higher fitness sensitivity [23]. Moreover, mobility and fitness sensitivity are often
indirectly linked through body size and allometric correlations. Indeed, many behavioural and
physiological traits, such as the space used by animals [51], dispersal distance [52] and perceptual
range [53], are positively correlated with body size [54].

However, some taxa rely heavily upon social cues to supplement the personal information that they
collect directly from the environment [26,55,56]. For these individuals, fitness sensitivity may not be as
strongly correlated with mobility because information about fitness differences can be acquired
vicariously, and from greater distances than direct, personal observations of the environment [56].
Moreover, at the behavioural scale, some animals might experience a speed–accuracy trade-off: the
perceptual capacity of individuals could decrease as their movement speed increases [16]. This trade-
off would drive a negative relationship between movement speed and the quality of information
collected while moving [16]. Our model can be easily adapted to reflect these additional layers of
complexity by modifying the relationship between mobility (β) and fitness sensitivity (λ). Furthermore,
contrary to our assumption that all consumers have the same mobility and fitness-directed movement,
individuals in a given population can show consistent differences in their mobility, as well as their
perceptual abilities. Intraspecific heterogeneities may affect the dynamics presented here but are
outside the scope of our mean-field approach. Future studies could extend our model to explore these
effects. Our model could also be extended to directly include temporal variation, the timescale of
environmental change and the magnitude of spatial heterogeneities, each of which may interact with
animal movement to affect consumer–resource patterns. We, however, suspect that considering more
complex landscapes (i.e. spatially explicit landscapes, with more than two patch types) would not
significantly alter the qualitative insights about the interactive effects of mobility, fitness sensitivity
and consumer demography on consumer–resource spatial patterns. Our model also ignored costs of
travel and delays in the movement of consumers among patches, which could alter predictions of
some patch-based foraging models (e.g. [57]) or cause cyclical dynamics [58]. We anticipate that these
effects would reduce the overall movement of consumers (increasing their retention in resident
patch(es)) but would not qualitatively alter the relative distribution of consumers among patches (see
[59]). Given that consumer demography itself can produce IFD-like patterns (figure 5), we suspect
that the incorporation of consumer demography should tend to lessen any additional departures from
IFD arising from travel costs or delayed movement responses. Evaluating these conjectures with
simulations is worthy of future investigation.

In summary, our study highlights a new unified perspective of animal movement in the context of
consumer–resource systems and provides a more flexible approach that considers both short- and
long-term dynamics. Our study thus provides a foundation for the understanding of consumer–
resource relationships across spatially heterogeneous landscapes, which are ubiquitous in natural
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systems. Furthermore, by explicitly considering the interplay between animal movement and consumer
demography with respect to consumer–resource interactions, our study contributes to a growing body of
theoretical literature on the effects of animal movement on higher-level ecological dynamics [27,60,61].
Such theoretical advances are needed to inform a rapidly growing body of empirical work on animal
movement ecology, aided by a surge in technological advances in animal tracking [62–64].
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